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ABSTRACT:

The  primary  objective  of  this  article  is  to  provide  a
comprehensive  yet  accessible  introduction  to  stable
distributions  within  the  context  of  financial  modelling.
Traditional  financial  models  often  rely  on  the  normal
(Gaussian) distribution to analyze asset returns; however, this
approach is inadequate in capturing the significant variations
and extreme events observed in real-world financial markets.
Financial  returns  frequently  exhibit  heavy  tails  and  greater
kurtosis,  making  it  essential  to  adopt  more  sophisticated
models  that  better  represent  these  fluctuations.  One  such
alternative is the Laplace distribution, a class of probability
distributions  characterized  by  heavy  tails.  This  distribution
provides a more accurate depiction of substantial price swings
and extreme events, which are crucial for risk assessment and
portfolio management. Furthermore, the Laplace distribution
allows for a broader range of dependence structures, making it
a valuable tool for financial analysts. By incorporating stable
distributions,  financial  models  can  enhance  predictive
accuracy and risk evaluation strategies.

Keywords:  Tail  Risk,  Value  at  Risk,  Laplace  and  normal
distribution.



 
 

 84 

Krishnan & Prasad 

1. Introduction 

  

The primary aim of this research is to 

develop models utilising asymmetric Laplace 

distributions, which have proven to be effective in 

modelling foreign exchange rates, interest rates, 

and variations in stock prices (Jayakumar, 2007). It 

integrates the asymmetric Laplace distribution and 

time-varying dynamics into both exponential 

smoothing and GARCH formulations. Backtesting 

results demonstrate a moderate improvement in 

VaR forecasting accuracy (Gerlach, 2013).  

 

The Laplace distribution is extensively 

employed in financial risk modelling owing to its 

capacity to effectively depict financial data 

characterised by heavy tails, resilience to extreme 

values, and asymmetry. The utilisation of this 

approach proves to be highly advantageous in the 

modelling of exceptional occurrences such as 

market crashes or significant price fluctuations, 

which are frequently observed in financial markets. 

The Laplace distribution exhibits reduced 

sensitivity to outliers, rendering it a desirable 

choice for the modelling of financial data that 

contains outliers.  

 

Furthermore, this technique can be 

employed to simulate asymmetric data, such as the 

returns of assets and other financial variables that 

exhibit asymmetric patterns. The utilisation of the 

Laplace distribution extends to stress testing and 

risk management, whereby it facilitates the 

evaluation of tail risk and the estimation of Value 

at Risk (VaR) and Conditional Value at Risk 

(CVaR). The utilisation of the prior distribution in 

Bayesian analysis for parameter estimation, 

namely within the field of finance, is also 

observed. The utilisation of the Laplace 

distribution is prevalent in option pricing and 

derivatives modelling, particularly in scenarios 

where there is a departure from normality in the 

asset price returns. Additionally, it facilitates the 

development of more precise models for non-

normal returns. The suitability of the Laplace 

distribution is contingent upon the particular 

attributes of the data and the objectives of the 

research. 

 

2. Literature Review  

 

Financial markets are intricate systems 

characterised by significant oscillations that pose 

difficulties for conventional risk assessment 

methods. Tail risk, which refers to infrequent but 

highly consequential occurrences in financial 

markets, is frequently overlooked in traditional 

approaches to risk assessment (Jorion, 2007). 

Incorporating non-Gaussian models into the Value 

at Risk (VaR) calculation has been acknowledged 

as a transformative theoretical framework that 

addresses the limitations of Gaussian-based 

approaches and improves the efficacy of risk 

management measures (Beaulieu, 2007). 

Incorporating non-Gaussian models into Value at 

Risk (VaR) calculations enhances the efficacy of 

risk management strategies by incorporating a 

broad spectrum of risks, enabling institutions to 

mitigate potential losses effectively (Del Brio, 

2020). This initiative facilitates financial stability 

and enhances compliance with regulatory 

standards. The capacity to conduct accurate 

evaluations of tail risk enables investors to 

navigate volatile markets and construct robust 

portfolios in the presence of calamitous events 

(Kadan, 2014).  

 

Numerous studies have developed 

methodologies for estimating extreme conditional 

quantiles, independent component analysis, and 

non-Gaussian financial risk management 

procedures. Using fuzzy portfolio Value at Risk 

(VaR) and Expected Shortfall (ES) models to 

resolve non-Gaussian distributions has been 

proposed as an extension of Yoshida's extended 

model (Moussa, 2014). In the context of financial 

market crises, the q-Gaussian probability density 

function demonstrates greater precision in 

estimating Value at Risk (VaR) than standard 

models. Numerous studies have examined non-

extensive statistical mechanics models within the 

context of finance's optimal portfolio selection 

problem (Devi, 2019).  

 

These efforts have centred on incorporating 

a Value-at-Risk constraint. Comparisons have been 

made between the   student-t distribution, 

autoregressive conditional heteroskedastic (ARCH) 

models, and extreme value theory (EVT) for 

depicting returns distributions with enormous tails 

(Lechner, 2010). Previous studies' reliance on the 

assumption of normality has the potential to 

produce misleading results. In conclusion, 

incorporating non-Gaussian models into Value at 

Risk (VaR) calculations represents a paradigm 

transition within the field of risk management. This 
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method addresses the limitations inherent in 

conventional Gaussian-focused techniques 

(Tyralis, 2022). 

 

3. Data and Methodology  

 

The present study uses the daily returns of 

S&P BSE SENSEX for the period 01-04-2000 to 

31-12-2022. The daily closing price S&P BSE 

SENSEX values are obtained from bseindia.com 

and the returns are calculated on the basis of the 

following- If the closing level of Sensex on date 

and   be the same for its previous business day, i.e., 

omitting intervening weekend or stock exchange 

holidays, then the one-day return on the market 

portfolio is calculated as:           

       

𝑟𝑡 = 𝑙𝑛
𝑙𝑡

𝑙𝑡−1
 𝑋 100 

 

Where LN (CLOSE) is the natural logarithm of 

‘CLOSE.’  

 

Normal distribution Probability Density Function: 

 

𝑓(𝑥) =
1

√2𝜋𝜎2
exp (−

(𝑥−𝜇)2

2𝜎2 )       (1)    

                                                                       

Inverse of PDF of Normal distribution    

  𝑥 = 𝐹−1(𝑝 ∣ 𝜇, 𝜎) = {𝑥: 𝐹(𝑥 ∣ 𝜇, 𝜎) = 𝑝}, (2)   

                                                    

Laplace Distribution Probability Density Function 

 

𝑓(𝑥) =
1

√2𝜎
exp [−

√2|𝑥−𝜇|

𝜎
]  (3) 

                                                                                         

Inverse PDF of Laplace distribution    

 

𝐹(𝑥) =
1

2
𝑒

𝑥−𝜇

𝑏 , 𝑥 ≤ 𝜇                           (4) 

 

2𝐹(𝑥) = 𝑒
𝑥−𝜇

𝑏  

 

ln(2𝐹(𝑥)) =
𝑥 − 𝜇

𝑏
 

 

𝑥 = 𝜇 + bln(2𝐹(𝑥)) 

 

Modelling Value at Risk (VaR) with the 

Laplace distribution entails estimating the potential 

losses a financial portfolio may incur over a 

specified time horizon with a given level of 

confidence. When financial data exhibits non-

normality and fat-tailed behaviour, this method is 

particularly useful for modelling VaR. To 

implement VaR, you must acquire historical data, 

calculate daily returns or price changes, and ensure 

that the data is stationary. Estimate parameters 

using the Laplace distribution, which is 

distinguished by its location () and scale (b). 

Calculate VaR at the desired levels of confidence 

(e.g., 95%, 99%). 

 

The calculated VaR represents the utmost 

potential loss at the specified level of confidence 

over the selected time frame. Backtesting and 

model validation are required to assess the VaR 

model's accuracy and make necessary adjustments. 

Evaluate the impact of extraordinary events that 

may not be captured by VaR alone by conducting 

scenario analysis and stress testing. 

 

Utilise VaR estimates to inform risk 

management decisions, portfolio optimisation, and 

capital allocation within a business. While the 

Laplace distribution can capture fat-tailed 

behaviour and provide more realistic VaR 

estimates than the normal distribution, it still 

simplifies the financial markets' underlying 

complexity. 

 

4. Analysis and Discussion 

  

Table 1. Descriptive statistics of BSE 30 Index 

count 5721 

mean 0.000424 

std 0.014354 

min -0.14102 

25% -1% 

50% 0% 

75% 1% 

max 0.1599 

Source: Author own calculation 

 

The analysis of descriptive statistics table 1 

indicates that the log return features do not adhere 

to the characteristics of a normal distribution. 

Therefore, it is necessary to consider the 

application of non-normal distribution in order to 

capture tail risk. 
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Figure 1. Log return of BSE 30 Index 

 

 
 

Table 2. The Distribution Fit information  

 

Distributio

ns 

sumsquare_er

ror 

locatio

n 

scale 

Laplace 70.1974 0.00092 774.068

2 

Normal 724.928 0.00042

4 

0.01435

2 

Source: Author’s own calculation 

 

Error-Induced Square Sum, this statistic 

measures the total deviation between the response 

values and the model fit. It is also known as the 

square sum of residuals and is abbreviated as SSE. 

A closer value to 0 indicates a superior match. 

Table 2 indicates Laplace distribution is very close 

to the log return theoretical properties.  

 

Figure 2. Distribution fit test 

 

 
 

Figure 2 shows the distribution fit best at Laplace 

distribution and it covers more tail risk than 

normal distribution goodness of fit.   

 

 

 Table 3. The tail risk, if the investment of Rs. 

100,000 

 

 
Source: Author own calculation 

 

Table 3 shows the tail risk (VaR) at various 

quantiles, with future risk prediction based on days 

one through two hundred and fifty. The results 

demonstrate conclusively that Laplace distribution 

provides more information about tail risk than 

normal distribution. The results also indicate that 

the use of various distributions improves the 

quality of risk reporting and provides investors and 

policymakers with more information about tail risk 

in the current market environment.  

 

5. Conclusion  

 

This article well explained stable 

distributions in financial models. The normal (or 

bell curve/Gaussian) model cannot represent asset 

variability, hence more precise models must be 

used to calculate financial returns. Dependent 

patterns and volatility are possible with heavy-

tailed probability distributions like the Laplace 

distribution. 

 

The Laplace distribution is commonly 

employed in modelling Value at Risk (VaR) within 

financial portfolios, enabling the estimation of 

probable losses within a predetermined period. 

This approach demonstrates utility in analyzing 

data that deviates from a normal distribution and 

exhibits fat-tailed characteristics. In order to 

operationalize Value at Risk (VaR), historical data 

is obtained, daily returns or price changes are 

computed, and parameters are evaluated utilizing 

the Laplace distribution. The computed Value at 

Risk (VaR) represents the upper bound of potential 

loss. 
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The Error-Induced Square Sum (SSE) 

quantifies the discrepancy between observed 

response values and the corresponding values 

predicted by a model. The Laplace distribution 

exhibits theoretical traits that closely resemble 

those of log returns, encompassing a greater degree 

of tail risk than the normal distribution. The 

findings indicate that the Laplace distribution 

offers greater insight into tail risk than the normal 

distribution. This enhancement in risk reporting 

quality equips investors and policymakers with a 

more comprehensive understanding of the 

associated risks. 
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