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Financial returns frequently exhibit heavy tails and greater
kurtosis, making it essential to adopt more sophisticated
models that better represent these fluctuations. One such
alternative is the Laplace distribution, a class of probability
distributions characterized by heavy tails. This distribution
provides a more accurate depiction of substantial price swings
and extreme events, which are crucial for risk assessment and
portfolio management. Furthermore, the Laplace distribution
allows for a broader range of dependence structures, making it
a valuable tool for financial analysts. By incorporating stable

distributions, financial models can enhance predictive
accuracy and risk evaluation strategies.
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1. Introduction

The primary aim of this research is to
develop models utilising asymmetric Laplace
distributions, which have proven to be effective in
modelling foreign exchange rates, interest rates,
and variations in stock prices (Jayakumar, 2007). It
integrates the asymmetric Laplace distribution and
time-varying dynamics into both exponential
smoothing and GARCH formulations. Backtesting
results demonstrate a moderate improvement in
VaR forecasting accuracy (Gerlach, 2013).

The Laplace distribution is extensively
employed in financial risk modelling owing to its
capacity to effectively depict financial data
characterised by heavy tails, resilience to extreme
values, and asymmetry. The utilisation of this
approach proves to be highly advantageous in the
modelling of exceptional occurrences such as
market crashes or significant price fluctuations,
which are frequently observed in financial markets.
The Laplace distribution exhibits reduced
sensitivity to outliers, rendering it a desirable
choice for the modelling of financial data that
contains outliers.

Furthermore, this technique can be
employed to simulate asymmetric data, such as the
returns of assets and other financial variables that
exhibit asymmetric patterns. The utilisation of the
Laplace distribution extends to stress testing and
risk management, whereby it facilitates the
evaluation of tail risk and the estimation of Value
at Risk (VaR) and Conditional Value at Risk
(CVaR). The utilisation of the prior distribution in

Bayesian analysis for parameter estimation,
namely within the field of finance, is also
observed. The utilisation of the Laplace

distribution is prevalent in option pricing and
derivatives modelling, particularly in scenarios
where there is a departure from normality in the
asset price returns. Additionally, it facilitates the
development of more precise models for non-
normal returns. The suitability of the Laplace
distribution is contingent upon the particular
attributes of the data and the objectives of the
research.

2. Literature Review

Financial markets are intricate systems
characterised by significant oscillations that pose

difficulties for conventional risk assessment
methods. Tail risk, which refers to infrequent but
highly consequential occurrences in financial
markets, is frequently overlooked in traditional
approaches to risk assessment (Jorion, 2007).
Incorporating non-Gaussian models into the Value
at Risk (VaR) calculation has been acknowledged
as a transformative theoretical framework that
addresses the limitations of Gaussian-based
approaches and improves the efficacy of risk
management ~ measures  (Beaulieu,  2007).
Incorporating non-Gaussian models into Value at
Risk (VaR) calculations enhances the efficacy of
risk management strategies by incorporating a
broad spectrum of risks, enabling institutions to
mitigate potential losses effectively (Del Brio,
2020). This initiative facilitates financial stability
and enhances compliance with regulatory
standards. The capacity to conduct accurate
evaluations of tail risk enables investors to
navigate volatile markets and construct robust
portfolios in the presence of calamitous events
(Kadan, 2014).

Numerous  studies have  developed
methodologies for estimating extreme conditional
quantiles, independent component analysis, and
non-Gaussian ~ financial  risk  management
procedures. Using fuzzy portfolio Value at Risk
(VaR) and Expected Shortfall (ES) models to
resolve non-Gaussian distributions has been
proposed as an extension of Yoshida's extended
model (Moussa, 2014). In the context of financial
market crises, the g-Gaussian probability density
function demonstrates greater precision in
estimating Value at Risk (VaR) than standard
models. Numerous studies have examined non-
extensive statistical mechanics models within the
context of finance's optimal portfolio selection
problem (Devi, 2019).

These efforts have centred on incorporating
a Value-at-Risk constraint. Comparisons have been
made between the student-t  distribution,
autoregressive conditional heteroskedastic (ARCH)
models, and extreme value theory (EVT) for
depicting returns distributions with enormous tails
(Lechner, 2010). Previous studies' reliance on the
assumption of normality has the potential to
produce misleading results. In conclusion,
incorporating non-Gaussian models into Value at
Risk (VaR) calculations represents a paradigm
transition within the field of risk management. This
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method addresses the limitations inherent in
conventional Gaussian-focused techniques

(Tyralis, 2022).
3. Data and Methodology

The present study uses the daily returns of
S&P BSE SENSEX for the period 01-04-2000 to
31-12-2022. The daily closing price S&P BSE
SENSEX values are obtained from bseindia.com
and the returns are calculated on the basis of the
following- If the closing level of Sensex on date
and be the same for its previous business day, i.e.,
omitting intervening weekend or stock exchange
holidays, then the one-day return on the market
portfolio is calculated as:

Ly
r = In—— X 100
lt—l

Where LN (CLOSE) is the natural logarithm of
‘CLOSE.’

Normal distribution Probability Density Function:

f@ = e (-5F) @

Inverse of PDF of Normal distribution
x=F'(plpo)={xF(x|puo)=p}(2)

Laplace Distribution Probability Density Function

£ = Zexp [- 2] (3)

Inverse PDF of Laplace distribution

F(x)z%e%,xsll (4)
x—_/,L
2F(x)=e b
In(2F (x)) = %

x = p+ bIn(2F (x))

Modelling Value at Risk (VaR) with the
Laplace distribution entails estimating the potential
losses a financial portfolio may incur over a
specified time horizon with a given level of
confidence. When financial data exhibits non-
normality and fat-tailed behaviour, this method is

particularly useful for modelling VaR. To
implement VaR, you must acquire historical data,
calculate daily returns or price changes, and ensure
that the data is stationary. Estimate parameters
using the Laplace distribution, which is
distinguished by its location () and scale (b).
Calculate VaR at the desired levels of confidence
(e.g., 95%, 99%).

The calculated VaR represents the utmost
potential loss at the specified level of confidence
over the selected time frame. Backtesting and
model validation are required to assess the VaR
model's accuracy and make necessary adjustments.
Evaluate the impact of extraordinary events that
may not be captured by VaR alone by conducting
scenario analysis and stress testing.

Utilise VaR estimates to inform risk
management decisions, portfolio optimisation, and
capital allocation within a business. While the
Laplace distribution can capture fat-tailed
behaviour and provide more realistic VaR
estimates than the normal distribution, it still
simplifies the financial markets' underlying
complexity.

4. Analysis and Discussion

Table 1. Descriptive statistics of BSE 30 Index

count 5721
mean 0.000424
std 0.014354
min -0.14102
25% -1%

50% 0%

75% 1%

max 0.1599

Source: Author own calculation

The analysis of descriptive statistics table 1
indicates that the log return features do not adhere
to the characteristics of a normal distribution.
Therefore, it is necessary to consider the
application of non-normal distribution in order to
capture tail risk.

85



Krishnan & Prasad

LI]"E‘M

Figure 1. Log return of BSE 30 Index
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Table 2. The Distribution Fit information

Distributio sumsquare er locatio scale
ns ror n
Laplace 70.1974 0.00092 774.068
2
Normal 724.928 0.00042 0.01435
4 2

Source: Author’s own calculation

Error-Induced Square Sum, this statistic
measures the total deviation between the response
values and the model fit. It is also known as the
square sum of residuals and is abbreviated as SSE.
A closer value to 0 indicates a superior match.
Table 2 indicates Laplace distribution is very close
to the log return theoretical properties.

Figure 2. Distribution fit test
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Figure 2 shows the distribution fit best at Laplace
distribution and it covers more tail risk than
normal distribution goodness of fit.

Table 3. The tail risk, if the investment of Rs.
100,000

Normal distribution

YaR 1 Day 10 Days 30 Days 90 days 180 days 250 days
0.25% -119.056 -376.489194 -652.098 -1129.47 -1597.31 -1882.45
0.50% -109.25 -345.479241 -598.388  -1036.44  -1465.74 -17274

1.00% -98.6687  -312.017919 -340.431  -936.054  -1323.78  -1560.09
2.50% -83.1291  -262.877229 -455317  -788.632  -111529  -131439
5.00% -69.7641  -220.613525 -382.114  -661.841 935984  -1103.07

10.00% -54.3552  -171.886181 -297.716  -515.659  -729251  -859.431

Laplace distribution

YaR 1 Day 10 Days 30 Days 90 days 180 days 250 days
0.25% 487 445  -1541.43706 -2669.85 462431 653976  -7707.19
0.50% -423.676  -1339.78007 -2320.57  -4019.34 568421  -6698.9

1.00% -359.906  -1138.12307 -1971.29  -341437  -4828.65  -3690.62
2.50% -275.607  -871.547026 -1509.56  -2614.64  -3697.66  -4357.74
5.00% -211.838  -669.890033 -1160.28  -2009.67  -2842.1 -3349.45

10.00% -148.068

Source: Author own calculation

-468.233039 -811.003  -1404.7 -1986.54  -2341.17

Table 3 shows the tail risk (VaR) at various
quantiles, with future risk prediction based on days
one through two hundred and fifty. The results
demonstrate conclusively that Laplace distribution
provides more information about tail risk than
normal distribution. The results also indicate that
the use of various distributions improves the
quality of risk reporting and provides investors and
policymakers with more information about tail risk
in the current market environment.

5. Conclusion

This article well explained stable
distributions in financial models. The normal (or
bell curve/Gaussian) model cannot represent asset
variability, hence more precise models must be
used to calculate financial returns. Dependent
patterns and volatility are possible with heavy-
tailed probability distributions like the Laplace
distribution.

The Laplace distribution is commonly
employed in modelling Value at Risk (VaR) within
financial portfolios, enabling the estimation of
probable losses within a predetermined period.
This approach demonstrates utility in analyzing
data that deviates from a normal distribution and
exhibits fat-tailed characteristics. In order to
operationalize Value at Risk (VaR), historical data
is obtained, daily returns or price changes are
computed, and parameters are evaluated utilizing
the Laplace distribution. The computed Value at
Risk (VaR) represents the upper bound of potential
loss.
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The Error-Induced Square Sum (SSE)
quantifies the discrepancy between observed
response values and the corresponding values
predicted by a model. The Laplace distribution
exhibits theoretical traits that closely resemble
those of log returns, encompassing a greater degree
of tail risk than the normal distribution. The
findings indicate that the Laplace distribution
offers greater insight into tail risk than the normal
distribution. This enhancement in risk reporting
quality equips investors and policymakers with a
more comprehensive understanding of the
associated risks.
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